Metformin ameliorates ionizing irradiation-induced long-term hematopoietic stem cell injury in mice

نویسندگان

  • Guoshun Xu
  • Hongying Wu
  • Junling Zhang
  • Deguan Li
  • Yueying Wang
  • Yingying Wang
  • Heng Zhang
  • Lu Lu
  • Chengcheng Li
  • Song Huang
  • Yonghua Xing
  • Daohong Zhou
  • Aimin Meng
چکیده

Exposure to ionizing radiation (IR) increases the production of reactive oxygen species (ROS) not only by the radiolysis of water but also through IR-induced perturbation of the cellular metabolism and disturbance of the balance of reduction/oxidation reactions. Our recent studies showed that the increased production of intracellular ROS induced by IR contributes to IR-induced late effects, particularly in the hematopoietic system, because inhibition of ROS production with an antioxidant after IR exposure can mitigate IR-induced long-term bone marrow (BM) injury. Metformin is a widely used drug for the treatment of type 2 diabetes. Metformin also has the ability to regulate cellular metabolism and ROS production by activating AMP-activated protein kinase. Therefore, we examined whether metformin can ameliorate IR-induced long-term BM injury in a total-body irradiation (TBI) mouse model. Our results showed that the administration of metformin significantly attenuated TBI-induced increases in ROS production and DNA damage and upregulation of NADPH oxidase 4 expression in BM hematopoietic stem cells (HSCs). These changes were associated with a significant increase in BM HSC frequency, a considerable improvement in in vitro and in vivo HSC function, and complete inhibition of upregulation of p16(Ink4a) in HSCs after TBI. These findings demonstrate that metformin can attenuate TBI-induced long-term BM injury at least in part by inhibiting the induction of chronic oxidative stress in HSCs and HSC senescence. Therefore, metformin has the potential to be used as a novel radioprotectant to ameliorate TBI-induced long-term BM injury.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pre-treatment with rapamycin protects hematopoiesis against radiation injury

Background: Protection of hematopoietic system has become a primary goal in the development of novel medical countermeasures against ionization radiation and radiotherapy. This study was to explore the role of rapamycin in normal tissues against radiation. Materials and Methods: Mice were pretreated with rapamycin by i.p. every other day for five times before 5 Gy or 8.5 Gy γ-ray whole bo...

متن کامل

Effect of human amnion-derived multipotent progenitor cells on hematopoietic recovery after total body irradiation in C57BL/6 mice

Background: The hematopoietic system is sensitive to the adverse effects of ionizing radiation. Cellular therapies utilizing mesenchymal stem cells or vascular endothelial cells have been explored as potential countermeasures for radiation hematopoietic injuries. We investigated cells cultured from amnion                ...

متن کامل

The Effects of p38 MAPK Inhibition Combined with G-CSF Administration on the Hematoimmune System in Mice with Irradiation Injury

The acute and residual (or long-term) bone marrow (BM) injury induced by ionizing radiation (IR) is a major clinic concern for patients receiving conventional radiotherapy and victims accidentally exposed to a moderate-to-high dose of IR. In this study, we investigated the effects of the treatment with the p38 inhibitor SB203580 (SB) and/or granulocyte colony-stimulating factor (G-CSF) on the h...

متن کامل

Total body irradiation selectively induces murine hematopoietic stem cell senescence.

Exposure to ionizing radiation (IR) and certain chemotherapeutic agents not only causes acute bone marrow (BM) suppression but also leads to long-term residual hematopoietic injury. This latter effect has been attributed to damage to hematopoietic stem cell (HSC) self-renewal. Using a mouse model, we investigated whether IR induces senescence in HSCs, as induction of HSC senescence can lead to ...

متن کامل

Senescence-unrelated impediment of osteogenesis from Flk1+ bone marrow mesenchymal stem cells induced by total body irradiation and its contribution to long-term bone and hematopoietic injury.

BACKGROUND AND OBJECTIVES Ionizing irradiation is a common treatment for cancer patients and can result in adverse side effects affecting the bone and hematopoietic systems. Although some studies have demonstrated that ionizing radiation can induce apoptosis and senescence in hematopoietic stem cells, little is known about the effects of total body irradiation (TBI) on bone marrow (BM) mesenchy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 87  شماره 

صفحات  -

تاریخ انتشار 2015